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Abstract  
The strength properties of rocks namely uniaxial 

compressive strength and tensile strength are important 

in design and stability evaluation of various mining, 

geotechnical engineering and other rock engineering 

projects. Accurate determination of these properties 

relies on high-quality samples, but challenges like 

sample availability, preparation of sample, cost and 

time constraints have led to an increasing reliance on 

computational methods for prediction. In this context, 

an indirect approach is proposed for predicting rock 

strength properties, specifically the uniaxial 

compressive strength (UCS) and tensile strength (TS), 

using grinding characteristics of ball mill, an 

unconventional yet indirect approach. A predictive 

modelling using multivariate regression is carried out 

to estimate the relationship between UCS, TS and the 

grinding characteristics of ball mill.  

 

The developed models demonstrated high accuracy 

with R² values of 0.93 for UCS and 0.96 for TS. 

Performance evaluation metrics showed an RMSE of 

6.03 MPa and a VAF of 93.45% for UCS and an RMSE 

of 0.99 MPa and a VAF of 96.47% for TS. The 

validation was performed using experimental UCS and 

TS values of basalt rocks along with ball mill grinding 

test data. The error analysis revealed that UCS 

prediction error ranged from 5.1% to 11.61% while TS 

prediction error varied between 4.26% and 16.39%.  
 
Keywords: Ball mill, Grinding characteristics, Tensile 

strength, Uniaxial compressive strength. 

 

Introduction 
In order to extract raw materials as efficiently as possible, it 

is imperative to evaluate the physico-mechanical properties 

of rocks before engaging in any rock engineering projects or 

mining activities. Several engineering projects require the 

use of rock properties such as mines, geotechnics and other 

engineering projects. Intact rock properties are an integral 

part of many rock mass classification systems as well as 

structures that are designed based on rock masses.  This will 

help engineers to understand the rock formation and 

behavior under different conditions at a given location. 

Knowing the rock properties will also help in determining 

whether the rock is stable enough to hold the structures. The 

determination of rock properties such as uniaxial 

compressive strength, tensile strength by indirect Brazilian 

tensile strength (BTS) test, shear strength, rock mass 

strength, elastic modulus etc. have been standardized by 

International Society for Rock Mechanics (ISRM)11.  

 

Among these tests, uniaxial compressive strength (UCS) and 

tensile strength (TS) hold significant importance in 

geotechnical developments. UCS is a critical parameter for 

rock related engineering-based projects such as tunneling 

and excavation and geotechnical problems such as dam 

design2,7,18. Tensile strength controls the stability of the 

underground mines and galleries, stability of rock slopes, 

ability to drill and also the design of blasting in rocks15,19. 

High-quality core samples are necessary for the 

determination of these properties. However, it is sometimes 

difficult to obtain such specimens.  

 

Various researchers have investigated the properties of rocks 

using the simple laboratory-based index tests, non-

destructive tests, mineralogical characteristics, textural 

characteristics etc. However, the literature studies show that 

a limited effort is made to correlate as well as to predict the 

physico-mechanical properties of rocks from distinctive 

indirect methods such as electrical properties of rocks, 

crushability indices, thermal characteristics, acoustic 

emission characteristics, ultrasonic vibrations, grinding 

parameters of mills etc. Several studies in the past have been 

performed for predicting the physico-mechanical properties 

using indirect approaches. Literature studies revealed the 

limitations of empirical estimations of rock properties 

through traditional approach and also, they are less reliable 

and fail to explain the hidden uncertainties in the 

heterogenous rock behavior.  

 

Some studies have shown to correlate the grinding 

parameters with the material properties. One such study is 

conducted by Bearman et al6 where the material parameters 

such as compressive strength, tensile strength and abrasivity 

are correlated with mill parameters to predict the 

comminution behavior during grinding. Petrakis and 

Komnitsas16 established correlations between material 

properties and breakage rate parameters determined from 

grinding tests, highlighting the potential of using grinding 

data to estimate the rock properties. A correlation between 

Bond work index and the mechanical properties of various 

Saudi ores such as uniaxial compressive strength and tensile 

strength was investigated by Abdel1.  

 

Kahraman et al12 evaluated grinding process of granites 

using physico-mechanical and mineralogical properties, 

further illustrating the relationship between rock 

characteristics and grinding behaviors. Aras et al3 found 
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correlations between Bond’s parameters and point load 

index. Zhang et al20 analyzed the influence of Cerchar 

Abrasiveness Index on particle size distribution during ball 

milling, highlighting the potential of using grinding data to 

understand rock abrasiveness behavior. Aras et al4 

successfully used ANNs to predict Bond work index from 

rock mechanics properties, demonstrating the potential of 

machine learning approaches.  

 

To capture the complex behavior during ball mill grinding, 

Umucu et al17 employed ANNs to evaluate the grinding 

process illustrating the importance of material properties. 

Fuerstenanu et al9 simulated grinding of coarse/fine 

(heterogenous) systems in a ball mill providing insights into 

the complexities involved in grinding process and the 

potential for using this data to infer rock properties.  

 

Asghari et al5 investigated the relationship among 

operational parameters, ore characteristics and product 

shape properties in an industrial semi-autogenous grinding 

(SAG) mill further illustrating the interdependence of 

various factors affecting the grinding process and the 

potential for using this data to infer rock properties. An 

investigation was performed by Kekec et al13 to study the 

effect of textural properties of rocks on their crushing and 

grinding characteristics, highlighting the importance of 

considering rock properties beyond just strength and 

hardness when analyzing the grinding behavior.  

 

In the domain of rock strength prediction, there is a notable 

gap in the literature regarding the utilization of grinding 

characteristics of mills as an indirect approach to correlate 

with rock properties. Consequently, a study was undertaken 

to leverage the grinding characteristics of ball mill such as 

feed input, grinding media quantity, grinding media weight, 

grind duration, fraction of mill volume occupied by bulk 

rock charge, fraction of mill volume occupied by bulk ball 

charge, interstitial filling ratio, charge ratio, extent of mill 

filling and the characteristics of particle size distribution 

such as representative particle sizes, width of particle size 

distribution and steepness factor as predictor variables to 

predict the uniaxial compressive strength and tensile 

strength of limestone and granite rocks, using multivariate 

regression technique.  

 

It is important to note that while ball milling itself is 

destructive, the ability to predict the rock properties from 

grinding characteristics eliminates the need for extensive 

sample preparation and destructive testing typically required 

for direct methods. A brief overview of multivariate 

regression method for predicting uniaxial compressive 

strength model for regression is discussed as follows: 

 

Multivariate Regression (MVR): Multivariate regression 

is used to account for the variance in an interval-dependent, 
based on linear combinations of interval, dichotomous or 

dummy-independent variables. It involves a model with one 

dependent variable and multiple independent variables. The 

goal of MVR is to investigate the relationship between 

multiple independent variables or predictors and a dependent 

variable or target. Let ‘n’ be independent variables and ‘m’ 

be observations. X denoted the matrix representation of 

independent variables which is m x (n+1) matrix. The first 

column of X is typically all ones, representing the intercept 

term. The dependent variable vector ‘y’ is m x 1 column 

vector. The MVR can be represented as shown in eq. 1: 

  

y = Xβ + ε                                                                          (1) 

 

where β is the vector of regression coefficients and ε is the 

vector of errors. 

 

The regression coefficients are typically obtained using least 

squares method. It is important to acknowledge that while 

least squares method is effective under certain conditions, it 

may yield unreliable results under others. A fundamental 

assumption is that the dependent variable ‘y’ follows a 

normal distribution. When the underlying data distribution 

deviates significantly from normality, the least squares 

method may produce unreliable results.  

 

Material and Methods  
Field visits were conducted to collect limestone and granite 

samples from various mines located in different 

geographical regions in India. These samples were then 

transported to the laboratory and were prepared to determine 

uniaxial compressive strength and tensile strength as per 

ISRM suggested methods. The prepared samples for test are 

standard NX size with a length-to-diameter ratio of 2.5 for 

UCS and diameter-to-thickness ratio of 0.5 for TS. In this 

study, a total of 32 samples consisting of limestone and 

granite were tested to determine the uniaxial compressive 

strength and tensile strength.  

 

To determine UCS, the prepared rock samples were centrally 

aligned on the loading platen and a constant loading rate was 

applied while recording the applied load until failure 

occurred. The set up to determine uniaxial compressive 

strength is shown in figure 1.  

 

For TS determination, an indirect tensile strength test 

following the Brazilian method was deployed which is 

represented in figure 2. This involved loading a disc shaped 

rock specimen along its axis within a diametrical plane. The 

sample was loaded steadily and consistently until it reached 

the point of failure, characterized by the initiation of cracks 

originating from the central region of the disc. The 

corresponding UCS and TS values were then determined 

using the load at failure and cross-sectional dimensions. The 

laboratory test results for UCS and TS samples are shown in 

table 1.  

 

Ball mill grinding tests: For ball mill grinding, the rock 

specimens of an approximate size of 50-60 mm were initially 

crushed in a jaw crusher. Subsequently, the crushed material 

underwent sieving to achieve a size range of –10+6.3 mm. 
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The obtained sieved rock charge serves as the feed input to 

the ball mill. Grinding experiments were carried out using a 

traditional laboratory-scale ball mill with a total volume of 

0.0865 m3. 

 

 
Figure 1: Determination of uniaxial compressive strength (a) Experimental setup (b) Specimen in loading window. 

 

Table 1 

 Laboratory test results of uniaxial compressive strength and tensile strength of limestone and granite 

Sample Uniaxial compressive strength (MPa) Tensile strength (MPa) 

Limestone 53.91 6.43 

Limestone 53.42 6.37 

Limestone 70.41 8.52 

Limestone 72.34 10.27 

Limestone 84.22 10.30 

Limestone 87.61 10.74 

Limestone 57.28 6.85 

Limestone 46.51 5.50 

Limestone 84.75 10.37 

Limestone 91.75 11.27 

Limestone 93.80 11.54 

Limestone 86.01 10.53 

Limestone 98.02 12.09 

Limestone 122.54 15.30 

Limestone 97.59 12.03 

Limestone 93.75 11.53 

Granite 80.32 11.50 

Granite 82.45 12.86 

Granite 111.57 21.54 

Granite 148.00 26.77 

Granite 88.15 11.74 

Granite 75.00 10.41 

Granite 126.64 21.01 

Granite 129.74 22.14 

Granite 111.24 16.45 

Granite 120.41 19.78 

Granite 108.90 15.42 

Granite 103.12 17.16 

Granite 93.562 16.8 

Granite 108.66 17.32 

Granite 127.85 18.41 

Granite 133.00 23.34 
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Figure 2: Experimental setup for Brazilian tensile strength test (a) Brazilian apparatus to conduct the test  

(b) Rock specimen before the failure (c) Crack propagation under tensile loading (d) Rock specimen after the failure 

 

 
Figure 3: A view of laboratory ball mill 

 

A typical laboratory ball mill is shown in figure 3. The mill 

operates at a speed of 55 rpm, which is 70% of its critical 

speed. To facilitate the grinding process, an adequate amount 

of grinding medium (HCHC balls having density = 7.45 

g/cc) is added to the ball mill drum. For the dry grinding 

experiments, the test sample's volume is selected so that the 

combined volume of the sample and grinding media is less 

than 40% of the total mill volume. The grinding 

characteristics of ball mill including the operating 

parameters are shown in table 2, table 3 and particle size 

distribution characteristics are shown in table 4 and table 5 

for limestone and granite samples. The representative 

particle sizes of the particle size distribution considered in 

this study are: d10, d20, d50, d80, d84 and d90 in µm. Also, the 

two measures of particle size distribution are steepness 

factor (SF) and width of particle size distribution (WPSD). 

 
Certain parameters of the ball mill such as fraction of mill 

volume occupied by bulk rock charge (Jr), fraction of mill 

volume occupied by bulk ball charge (Jb), interstitial filling 

ratio (U), charge ratio (υ), extent of mill filling (ψ), steepness 

factor (SF), width of particle size distribution (WPSD) are 

determined using the expressions shown in eq. 2 to 8: 
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(6) 

 

SF =  
d50

d20
                                                                              (7) 

WPSD =  
(d90− d10)

d50
                                                             (8) 

 

where mr is the mass of rock charge, mb is the mass of balls 

charge, ρr, is density of rock charge, ρb is density of ball 

charge (ρb = 7.65 g/cc), Vmill is the mill volume and ε is bed 

porosity for ball mill (30-40%) while d10, d20, d50, d80, d84 

and d90 are the sieve sizes having 10%, 20%, 50%, 80%, 

84% and 90% cumulative weight passing size in µm. 

 

Steepness factor is a measure of the slope of the particle size 

distribution curve and it is defined as the ratio of the particle 
size corresponding to 50% passing (d50) to the particle size 

corresponding to 20% passing (d20). If SF is more than two, 

then the particle size distribution is broader in range and if 



     Disaster Advances                                                                                                                            Vol. 18 (5) May (2025) 

https://doi.org/10.25303/185da920103      96 

SF is less than two, the particle size distribution is narrower 

or steeper in range14. The SF for the ground materials varied 

from 2.67 to 5.41 for limestone and 2.78 to 4.33 for granite 

which clearly indicates broader particle size distribution.  

 

Width of particle size distribution, on the other hand, refers 

to the range of particle sizes present in the distribution and it 

can be measured using different parameters such as the 

range, standard deviation, variance and coefficient of 

variation. A narrow width of particle size distribution 

indicates that most of the particles are of similar size while a 

wide width indicates a broad range of particle sizes. In this 

study, the width of particle size distribution is taken as 

relative span or coefficient of variation (CV= (d90-d10)/d50) 

which is a dimensionless measure of PSD. For limestone the 

WPSD varies between 11.11 to 19.29 whereas for granite, it 

varies between 14.03 to 22.77. 

 

Results and Discussion 
The development of the prediction models for predicting 

uniaxial compressive strength and tensile strength of rocks 

from grinding characteristics of ball mill, performance 

evaluation of developed models and validation of developed 

prediction models are discussed. 

 

Predictive modeling of uniaxial compressive strength 
and tensile strength: Multivariate regression is carried out 

to develop the prediction models for UCS and TS using the 

grinding characteristics of ball mill as independent variables.

 

Table 2 

Operating parameters of ball mill for limestone grinding 

Test 

Run 
FI GMQ 

GMW 

(kg) 

Jr  

(%) 

Jb 

 (%) 
U 

τ 

(min) 
υ 

Ψ 

 (%) 

1 1000 125 16.74 0.70 3.91 0.49 300 16.74 4.88 

2 1000 135 19.39 0.69 4.53 0.42 450 19.39 5.54 

3 1000 145 23.57 0.71 5.50 0.36 600 23.57 6.59 

4 1000 155 28.85 0.69 6.74 0.28 750 28.85 7.90 

5 1250 125 23.20 0.87 5.42 0.44 450 18.56 6.67 

6 1250 135 25.76 0.85 6.01 0.39 300 20.61 7.29 

7 1250 145 31.01 0.86 7.24 0.33 750 24.81 8.61 

8 1250 155 34.21 0.82 7.99 0.28 600 27.37 9.39 

9 1500 125 23.33 1.00 5.45 0.51 600 15.55 6.86 

10 1500 135 27.51 1.03 6.42 0.44 750 18.34 7.91 

11 1500 145 29.90 0.98 6.98 0.39 300 19.93 8.49 

12 1500 155 33.37 1.07 7.79 0.38 450 22.25 9.37 

13 1750 125 25.80 1.19 6.03 0.54 750 14.74 7.64 

14 1750 135 28.84 1.17 6.73 0.48 600 16.48 8.40 

15 1750 145 33.29 1.18 7.77 0.42 450 19.02 9.50 

16 1750 155 37.37 1.17 8.73 0.37 300 21.35 10.51 
 

Table 3 

 Operating parameters of ball mill for granite grinding 

Test 

Run 
FI GMQ 

GMW 

(kg) 

Jr 

 (%) 

Jb 

 (%) 
U 

τ 

(min) 
υ 

Ψ  

(%) 

1 1000 125 15.924 0.626 3.979 0.437 5.0 15.924 4.718 

2 1000 135 17.093 0.686 4.271 0.446 7.5 17.093 5.079 

3 1000 145 23.972 0.664 5.990 0.308 10.0 23.972 6.825 

4 1000 155 29.112 0.670 7.274 0.256 12.5 29.112 7.337 

5 1250 125 22.822 0.839 5.703 0.409 7.5 18.258 6.704 

6 1250 135 20.391 0.826 5.095 0.450 5.0 16.313 7.198 

7 1250 145 24.576 0.773 6.141 0.350 12.5 19.661 7.089 

8 1250 155 30.528 0.834 7.628 0.304 10.0 24.422 8.680 

9 1500 125 19.335 0.946 4.831 0.544 10.0 12.890 5.916 

10 1500 135 22.615 0.999 5.651 0.491 12.5 15.077 6.811 

11 1500 145 26.809 1.044 6.699 0.433 5.0 17.873 7.935 

12 1500 155 34.738 1.027 8.680 0.329 7.5 23.159 9.955 

13 1750 125 20.446 1.245 5.109 0.677 12.5 11.683 6.500 

14 1750 135 23.418 1.268 5.852 0.602 10.0 13.382 7.287 

15 1750 145 26.811 1.195 6.699 0.495 7.5 15.321 8.086 

16 1750 155 38.225 1.061 9.551 0.309 5.0 21.843 10.886 
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Table 4 

 Characteristics of particle size distribution of limestone 

Test 

Run 

d10 

(µm) 

d20 

(µm) 

d50 

(µm) 

d80 

(µm) 

d84 

(µm) 

d90 

(µm) 
SF WPSD 

1 44.13 82.34 445.53 2657.70 3869.60 5205.59 5.41 11.59 

2 43.11 87.43 450.58 2140.33 3795.20 5226.98 5.15 11.50 

3 40.21 89.83 385.77 2518.75 3782.54 5157.14 4.29 13.26 

4 43.89 85.99 317.23 2459.77 3801.36 4885.46 3.69 15.26 

5 46.31 90.04 356.52 2089.51 3672.70 5181.99 3.96 14.41 

6 53.23 92.98 365.67 2086.93 3821.49 5096.39 3.93 13.79 

7 39.73 90.23 384.44 1935.29 3591.72 5080.51 4.26 13.11 

8 47.69 95.41 438.66 2743.57 3166.27 4921.73 4.60 11.11 

9 53.43 90.55 318.13 2200.96 2928.96 4811.42 3.51 14.96 

10 46.72 87.62 326.75 1976.88 3600.25 4979.18 3.73 15.10 

11 51.85 96.40 360.74 2285.21 3393.73 5167.12 3.74 14.18 

12 44.72 90.16 412.09 2193.57 3773.63 5300.00 4.57 12.75 

13 45.84 88.38 313.13 2296.44 3476.12 5001.21 3.54 15.83 

14 48.85 92.27 246.54 2134.72 3100.23 4804.55 2.67 19.29 

15 51.00 93.55 279.44 2153.50 3192.69 4832.14 2.99 17.11 

16 52.55 95.71 429.85 2190.10 3300.90 5017.25 4.49 11.55 

 

Table 5 

 Characteristics of particle size distribution of granite 

Test 

Run 

d10 

(µm) 

d20 

(µm) 

d50 

(µm) 

d80 

(µm) 

d84 

(µm) 

d90 

(µm) 
SF WPSD 

1 45.38 67.60 281.23 3365.02 4486.35 5416.83 4.16 19.10 

2 43.49 71.20 303.52 3645.29 4175.56 5331.95 4.26 17.42 

3 42.99 69.44 279.01 3247.94 4397.62 5327.96 4.02 18.94 

4 40.88 74.69 300.34 3419.90 4421.02 5302.70 4.02 17.52 

5 45.30 71.83 225.38 3017.42 4108.22 5177.85 3.14 22.77 

6 52.09 80.32 244.85 2870.84 3794.15 5112.75 3.05 20.67 

7 44.91 75.33 292.66 3168.54 4200.23 5200.12 3.89 17.62 

8 42.22 70.31 274.57 3302.92 4043.62 5160.95 3.91 18.64 

9 49.54 70.57 284.70 2939.48 3704.84 5210.36 4.03 18.13 

10 48.39 77.23 276.31 3097.05 3897.42 5150.69 3.58 18.47 

11 50.54 83.96 252.07 2198.08 3441.09 5011.87 3.00 19.68 

12 45.61 82.22 355.72 2677.60 3903.17 5037.89 4.33 14.03 

13 45.24 73.90 249.52 3173.16 4030.41 5220.45 3.38 20.74 

14 47.32 77.38 252.58 2671.79 3571.23 5135.64 3.26 20.15 

15 52.87 87.66 263.55 2050.54 3298.21 4896.33 3.01 18.38 

16 48.88 80.51 223.68 2811.63 3829.97 5100.20 2.78 22.58 

 

In this study, the grinding characteristics of the ball mill 

include feed input, grinding media quantity i.e., number of 

balls, grinding media weight, fraction of mill volume 

occupied by the bulk rock charge, fraction of mill volume 

occupied by the bulk ball charge, interstitial filling ratio, 

grinding duration, charge ratio, extent of mill filling, 

representative cumulative weight passing sieve sizes in 

microns respectively. The developed models are shown in 

eq. 9 and 10. 

 

UCS (MPa) = –576.93 + 0.15FI – 0.056GMQ – 0.017GMW 

+ 111.95Jr + 55.37Jb – 472.93U   +136.56τ + 6.99υ – 19.32ψ 

+ 0.23d10 + 4.35d20 – 1.38d50 + 0.01d80 – 0.008d84 + 0.07d90 

+ 82.31SF – 0.73WPSD –153.73U2
 + 0.94U *d50                (9) 

 

TS (MPa) = –295.55 + 0.02FI + 0.03GMQ – 0.005GMW – 

19.22Jr + 21.99Jb – 8.26U + 73.93τ + 0.59υ – 1.76ψ + 

1.81d10 + 0.93d20 – 0.23d50 – 0.002d80 – 0.003d84 + 0.01d90 

+ 22.74SF + 0.61WPSD – τ 2 1185.14 – 335.40τ 2 *SF        

(10) 

 

where FI is feed input, GMQ is grinding media quantity, 

GMW is grinding media weight, Jr is the fraction of mill 

volume occupied by bulk rock charge, Jb is the fraction of 

mill volume occupied by bulk ball charge, U is interstitial 

filling ratio, τ is grinding duration, υ is charge ratio, ψ is 

extent of mill filling and d10, d20, d50, d80, d84 and d90 are the 

sieve sizes having 10%, 20%, 50%, 80%, 84% and 90% 

cumulative weight passing sizes in µm, WPSD and SF are 

the widths of the particle size distribution and steepness 
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factor. The model summary for models UCS and TS are 

shown in table 6. 

 

Correlation between the grinding characteristics of ball mill 

and uniaxial compressive strength (UCS) for different types 

of rocks is evaluated with aid of regression models. 

Multivariate dependence techniques have their main 

objective to specify a model that can explain and predict the 

behaviour of one or more dependent variables through one 

or more explanatory variables. A multivariate regression 

considers the effect of more than one explanatory variable 

on some outcome of interest. It evaluates the relative effect 

of these explanatory, or independent, variables on the 

dependent variable when holding all the other variables in 

the model constant.  

 

The residuals plot for UCS including normal probability 

plot, residual versus fit, histogram and residuals versus order 

is shown in figure 4. The minimum and maximum residuals 

values obtained for the prediction model UCS are -9.56 MPa 

and 16.53 MPa. The standard deviations in the predicted 

value and residuals are found to be 23.18 and 6.13 

respectively. A plot between actual and predicted UCS 

values from the multivariate regression model UCS is shown 

in figure 5. The predicted UCS ranged from 51.75 to 143.89 

MPa. The mean of the predicted value for UCS of rocks is 

95.37 MPa. The overall trend was upwards, with the natural 

fluctuations stimulated from the prediction model. The 

correlogram for dependent variable UCS with grinding 

characteristics is shown in figure 6. 

 

The correlation matrix shows the relationships among the 

grinding characteristics of ball mill and also with UCS 

dependent variable. The median particle size was found to 

have a higher inverse correlation with UCS. The operating 

parameters have lower influence whereas the characteristics 

of particle size distribution have higher correlation with 

UCS. Similarly, the prediction model is developed for tensile 

strength using grinding characteristics as input variables and 

the model summary is shown in table 6. The correlation 

coefficient for the developed model is 0.965. The residuals 

plot for tensile strength of rocks is shown in figure 7. The 

minimum and maximum residuals values are -1.56 MPa and 

2.35 MPa with a standard deviation of 1.01. 

 

Table 6 
 Model summary of UCS and TS 

Model R R2 Adjusted R2 Std. Error of the Estimate 

UCS 0.96 0.93 0.93 1.86 

TS 0.98 0.96 0.90 1.62 

 

 
Figure 4: Residual plots of UCS model 
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Figure 5: A plot of predicted and experimental uniaxial compressive strength 

 

 
Figure 6:  Correlogram between uniaxial compressive strength and the grinding characteristics 

 

The normal probability plot of the residuals verifies the 

assumption that the residuals are normally distributed. The 

residuals versus fits plot shown in figure 7 validates the 

assumption that residuals are randomly distributed and have 

constant variance. A plot between the experimental and 

predicted values of tensile strength is shown in figure 8.  The 

mean of the predicted value for tensile strength of rocks is 

13.82 MPa with a standard deviation of 5.27. 

 
The correlogram between tensile strength and grinding 

characteristics is shown as in figure 9. The correlation matrix 

shows the relationships among the grinding characteristics 

of ball mill and also with TS dependent variable. Similar to 

UCS, the median particle size was found to have a higher 

inverse correlation with TS. The operating parameters have 

lower influence and vice versa for representative particle.  

 
Performance evaluation of prediction models: One of the 

crucial steps in the development of a prediction model is the 

assessment of model based on performance indices which 
reports its validity for prediction. A few commonly used 

metrics for evaluating the performance of MVR models 
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include coefficient of determination (R2), root mean square 

error (RMSE) and variance accounted for (VAF) and they 

are shown in eq. 11 to 13. R2 quantifies the strength and 

direction of linear relationship between the two variables. 

RMSE reflects the standard deviation of residuals. VAF 

measures the proportion of error variance relative to the 

variance in the observed data.  According to Hair et al10, a 

VAF > 80% indicates full mediation, between 20% and 80% 

suggests partial mediation and < 20% implies no mediation. 

 

𝑅2 = 1 − 
∑ (𝑦𝑎−𝑦𝑝)2

𝑖

∑ (𝑦𝑎−𝑦𝑚)2
𝑖

                  (11) 

RMSE =  √
1

N
∑ (yp − ya)2N

i=1                (12) 

VAF = (1 −
𝑉𝑎𝑟(𝑦𝑎−𝑦𝑝)

𝑉𝑎𝑟(𝑦𝑎)
) ∗ 100                  (13) 

 

where N is represents the number of samples, ya is represents 

the true value or actual value, yp is represents the predicted 

values and ym is represents mean value.  

 

The calculated performance indices for the developed 

regression models UCS and TS are shown in table 7. For an 

excellent prediction model with high level of acceptability, 

in theory, the R2, RMSE and VAF will have the values of 1, 

0 and 100% respectively8.   

 

 

 
Figure 7: Residual plots of TS model 

 

 
Figure 8: A plot of predicted and experimental tensile strength 
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Figure 9: Correlogram between tensile strength and grinding characteristics 

 

Table 7 

Performance evaluation metrics for developed prediction models 

Prediction Model  

(Dependent Variable) 

Performance Evaluation Indexes 

R2 RMSE VAF (%) 

UCS 0.93 6.03 93.45 

TS 0.96 0.99 96.47 

 

Table 8 

Physico-mechanical properties of basalt rocks 

Rock Uniaxial Compressive Strength, MPa Tensile Strength, MPa 

Basalt 

158.52 5.85 

55.56 7.01 

138.07 6.23 

 

Validation of the developed prediction models: The 

proposed prediction models are validated by predicting the 

uniaxial compressive strength and tensile strength of basalt 

rocks (for the present study). The test data is gathered by 

conducting batch grinding tests on basalt rocks to generate 

the grinding characteristics of the ground sample. 

Laboratory tests are conducted to determine the UCS and TS 

as shown in table 8. The table 9 provide the test conditions 

for ball mill grinding of rock samples under dry conditions. 

 

The density of grinding media is 7.65 g/cc made of high 

chrome high carbon steel balls. A bed porosity (ε) of 0.36 is 
assumed for the ball mill. The particle size distribution is 

obtained after sieving the ground product for a duration of 

10 minutes and the representative cumulative weight 

percentage passing sieve sizes are calculated and the 

corresponding characteristics of particle size distribution are 

obtained. Table 10 provides the particle size distribution for 

the ground basalt samples. The operating parameters of ball 

mill and characteristics of particles size distribution of 

ground samples generated account for validation which 

serves as inputs to predict the UCS and TS of basalt. The 

predicted UCS and TS models are tabulated and compared 

with the experimental values. 

 

The change in true value and predicted value yields the 

associated error or residual of the prediction model and 
henceforth error percentage is calculated. A large error 

signifies the poor prediction model. The validations of 

models are shown in table 11. 
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Table 9 

Operational parameters of ball mill for grinding of basalt samples 

Parameters Values 

Feed input to ball mill (g) 500, 600, 700 

Grinding media 40, 55, 70 

Grinding media weight (kg) 6.957, 8.456, 10.050 

Grinding duration (min) 5.0, 10.0, 15.0 

Bulk rock charge fraction (%) 0.39, 0.42, 0.51 

Bulk ball charge fraction (%) 1.63, 1.99, 2.36 

Interstitial filling ratio 0.67, 0.58, 0.59 

Charge ratio 13.91, 14.90, 14.35 

Extent of mill filling (%) 2.03, 2.41, 2.87 

Feed input to ball mill (g) 500, 600, 700 

 

Table 10 

Characteristics of particle size distribution of basalt samples 

S.N. 
Particle Size Distribution 

d10 d20 d50 d80 d84 d90 SF WPSD 

1 55.76 104.23 430.24 1910.27 2552.11 4022.21 7.71 72.13 

2 48.12 90.21 368.49 1750.53 2498.22 3815.81 7.65 79.28 

3 43.21 85.30 315.51 1530.12 2304.43 3666.91 7.30 84.85 

 

Table 11 

Validation of developed prediction models 

Prediction 

Model  

Actual  

Values 

Predicted  

Values 

Error 

Percentage 

UCS 

(MPa) 

158.52 140.11 11.61 

55.56 49.63 10.68 

138.07 131.02 5.10 

TS  

(MPa) 

5.85 5.60 4.26 

7.01 6.17 12.30 

6.21 5.19 16.39 

 

Slightly higher error percentages are observed for uniaxial 

compressive strength prediction model. Prediction models 

are dominated by large data size. Insufficient data available 

in the development of prediction models may results in 

higher prediction errors. 

 

Conclusion 
Numerous researchers have investigated various indirect 

methodologies for estimating rock properties. Directly 

assessing these properties in rock engineering projects 

proves intricate and time-consuming. This study introduces 

an innovative approach that utilizes the grinding 

characteristics of a ball mill to predict uniaxial compressive 

strength and tensile strength. Predictive modelling is 

performed to establish the correlations between UCS, TS 

and grinding characteristics of the ball mill. The model 

accuracy is assessed based on R2 for the developed 

prediction model with R2 values of 0.93 for UCS and 0.96 

for TS.  

 

Performance evaluation metrics are applied to assess the 

performance of prediction models, showing an RMSE of 

6.03 MPa and VAF of 93.45% for UCS and an RMSE of 

0.994 MPa and VAF of 96.47% for TS. To validate the 

developed prediction models, UCS and TS of basalt rocks 

and the results of ball mill grind tests are used and the error 

percentage is estimated for the predicted and experimental 

values of basalt rock properties. The error percentage for 

UCS varied from 5.1% to11.61%, while for TS it varied 

between 4.26% to 16.39% respectively. The proposed 

models demonstrate good accuracy, indicating their 

robustness and reliability.  

 

However, the current scope of these models is limited to a 

small selection of rock types. To fully establish their 

generalizability, a comprehensive investigation 

encompassing a broader range of rock types and a more 

diverse dataset is essential. Such an expansion would 

enhance the predictive capability of the models and would 

solidify their potential for widespread applications in rock 

mechanics and rock engineering.  
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